3.4.19 \(\int \frac {\sqrt {1+2 x^2+2 x^4}}{x^2 (3+2 x^2)} \, dx\) [319]

Optimal. Leaf size=399 \[ -\frac {\sqrt {1+2 x^2+2 x^4}}{3 x}+\frac {\sqrt {2} x \sqrt {1+2 x^2+2 x^4}}{3 \left (1+\sqrt {2} x^2\right )}-\frac {1}{6} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )-\frac {\sqrt [4]{2} \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{3 \sqrt {1+2 x^2+2 x^4}}+\frac {\left (3+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{21 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}+\frac {5 \left (3+\sqrt {2}\right )^2 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{252 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}} \]

[Out]

-1/18*arctan(1/3*x*15^(1/2)/(2*x^4+2*x^2+1)^(1/2))*15^(1/2)-1/3*(2*x^4+2*x^2+1)^(1/2)/x+1/3*x*(2*x^4+2*x^2+1)^
(1/2)*2^(1/2)/(1+x^2*2^(1/2))-1/3*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticE(sin(2*
arctan(2^(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(1/4)/(2
*x^4+2*x^2+1)^(1/2)+1/42*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticF(sin(2*arctan(2^
(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(3+2^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(3/4)
/(2*x^4+2*x^2+1)^(1/2)+5/504*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticPi(sin(2*arct
an(2^(1/4)*x)),1/2-11/24*2^(1/2),1/2*(2-2^(1/2))^(1/2))*(3+2^(1/2))^2*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*
2^(1/2))^2)^(1/2)*2^(3/4)/(2*x^4+2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 399, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {1325, 1295, 1211, 1117, 1209, 1230, 1720} \begin {gather*} -\frac {1}{6} \sqrt {\frac {5}{3}} \text {ArcTan}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {2 x^4+2 x^2+1}}\right )+\frac {\left (3+\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{21 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}-\frac {\sqrt [4]{2} \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} E\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{3 \sqrt {2 x^4+2 x^2+1}}+\frac {5 \left (3+\sqrt {2}\right )^2 \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{252 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}+\frac {\sqrt {2} \sqrt {2 x^4+2 x^2+1} x}{3 \left (\sqrt {2} x^2+1\right )}-\frac {\sqrt {2 x^4+2 x^2+1}}{3 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + 2*x^2 + 2*x^4]/(x^2*(3 + 2*x^2)),x]

[Out]

-1/3*Sqrt[1 + 2*x^2 + 2*x^4]/x + (Sqrt[2]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(3*(1 + Sqrt[2]*x^2)) - (Sqrt[5/3]*ArcTan
[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/6 - (2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*
x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(3*Sqrt[1 + 2*x^2 + 2*x^4]) + ((3 + Sqrt[2])*(1 + Sqr
t[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(21*2
^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (5*(3 + Sqrt[2])^2*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x
^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(252*2^(1/4)*Sqrt[1 + 2*x^2 + 2
*x^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1230

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Di
st[(c*d + a*e*q)/(c*d^2 - a*e^2), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2)
, Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a
*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]

Rule 1295

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f
*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1325

Int[(((f_.)*(x_))^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Dist[
1/(d*e), Int[(f*x)^m*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] - Dist[(c*d^2 - b*d*e + a*e^2)/(d*e*f
^2), Int[(f*x)^(m + 2)*((a + b*x^2 + c*x^4)^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && Ne
Q[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, 0]

Rule 1720

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[-b + c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*
e*Rt[-b + c*(d/e) + a*(e/d), 2])), x] + Simp[(B*d + A*e)*(A + B*x^2)*(Sqrt[A^2*((a + b*x^2 + c*x^4)/(a*(A + B*
x^2)^2))]/(4*d*e*A*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticPi[Cancel[-(B*d - A*e)^2/(4*d*e*A*B)], 2*ArcTan[q*x], 1
/2 - b*(A/(4*a*B))], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {1+2 x^2+2 x^4}}{x^2 \left (3+2 x^2\right )} \, dx &=\frac {1}{6} \int \frac {2+6 x^2}{x^2 \sqrt {1+2 x^2+2 x^4}} \, dx-\frac {5}{3} \int \frac {1}{\left (3+2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx\\ &=-\frac {\sqrt {1+2 x^2+2 x^4}}{3 x}-\frac {1}{6} \int \frac {-6-4 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{21} \left (5 \left (3+\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx+\frac {1}{21} \left (5 \left (2+3 \sqrt {2}\right )\right ) \int \frac {1+\sqrt {2} x^2}{\left (3+2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx\\ &=-\frac {\sqrt {1+2 x^2+2 x^4}}{3 x}-\frac {1}{6} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )-\frac {5 \left (3+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{42 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}+\frac {5 \left (3+\sqrt {2}\right )^2 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{252 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}-\frac {1}{3} \sqrt {2} \int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{3} \left (-3-\sqrt {2}\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx\\ &=-\frac {\sqrt {1+2 x^2+2 x^4}}{3 x}+\frac {\sqrt {2} x \sqrt {1+2 x^2+2 x^4}}{3 \left (1+\sqrt {2} x^2\right )}-\frac {1}{6} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )-\frac {\sqrt [4]{2} \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{3 \sqrt {1+2 x^2+2 x^4}}+\frac {\left (3+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{21 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}+\frac {5 \left (3+\sqrt {2}\right )^2 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{252 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.13, size = 208, normalized size = 0.52 \begin {gather*} \frac {-6-12 x^2-12 x^4-6 i \sqrt {1-i} x \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} E\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )+(9-3 i) \sqrt {1-i} x \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} F\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )-5 (1-i)^{3/2} x \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} \Pi \left (\frac {1}{3}+\frac {i}{3};\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )}{18 x \sqrt {1+2 x^2+2 x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + 2*x^2 + 2*x^4]/(x^2*(3 + 2*x^2)),x]

[Out]

(-6 - 12*x^2 - 12*x^4 - (6*I)*Sqrt[1 - I]*x*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticE[I*ArcSinh[Sq
rt[1 - I]*x], I] + (9 - 3*I)*Sqrt[1 - I]*x*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF[I*ArcSinh[Sqr
t[1 - I]*x], I] - 5*(1 - I)^(3/2)*x*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticPi[1/3 + I/3, I*ArcSin
h[Sqrt[1 - I]*x], I])/(18*x*Sqrt[1 + 2*x^2 + 2*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.14, size = 511, normalized size = 1.28

method result size
risch \(-\frac {\sqrt {2 x^{4}+2 x^{2}+1}}{3 x}+\frac {\left (-\frac {1}{3}+\frac {i}{3}\right ) \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \left (\EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )-\EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {\sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {5 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{9 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(240\)
elliptic \(-\frac {\sqrt {2 x^{4}+2 x^{2}+1}}{3 x}+\frac {2 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {\sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {5 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{9 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(360\)
default \(-\frac {\sqrt {2 x^{4}+2 x^{2}+1}}{3 x}+\frac {2 \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {\left (-\frac {2}{3}+\frac {2 i}{3}\right ) \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \left (\EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )-\EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {2 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {\sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {5 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{9 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(511\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^4+2*x^2+1)^(1/2)/x^2/(2*x^2+3),x,method=_RETURNVERBOSE)

[Out]

-1/3*(2*x^4+2*x^2+1)^(1/2)/x+2/3/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*El
lipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+(-2/3+2/3*I)/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^
(1/2)/(2*x^4+2*x^2+1)^(1/2)*(EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-EllipticE(x*(-1+I)^(1/2),1/2*
2^(1/2)+1/2*I*2^(1/2)))+2/3/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*Ellipti
cF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-1/3*I/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4
+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-1/3/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^
2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+1/3*I/(-1+I)^(1/2)*(1
+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2)
)-5/9/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticPi(x*(-1+I)^(1/2),1/3
+1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^4+2*x^2+1)^(1/2)/x^2/(2*x^2+3),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)/((2*x^2 + 3)*x^2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^4+2*x^2+1)^(1/2)/x^2/(2*x^2+3),x, algorithm="fricas")

[Out]

integral(sqrt(2*x^4 + 2*x^2 + 1)/(2*x^4 + 3*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {2 x^{4} + 2 x^{2} + 1}}{x^{2} \cdot \left (2 x^{2} + 3\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**4+2*x**2+1)**(1/2)/x**2/(2*x**2+3),x)

[Out]

Integral(sqrt(2*x**4 + 2*x**2 + 1)/(x**2*(2*x**2 + 3)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^4+2*x^2+1)^(1/2)/x^2/(2*x^2+3),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)/((2*x^2 + 3)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {2\,x^4+2\,x^2+1}}{x^2\,\left (2\,x^2+3\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^2 + 2*x^4 + 1)^(1/2)/(x^2*(2*x^2 + 3)),x)

[Out]

int((2*x^2 + 2*x^4 + 1)^(1/2)/(x^2*(2*x^2 + 3)), x)

________________________________________________________________________________________